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Abstract—Forecasting short-term electricity market prices has
been the focus of several studies in recent years. Although various
approaches have been examined, achieving sufficiently low fore-
casting errors has not been always possible. However, certain ap-
plications, such as demand-side management, do not require exact
values for future prices but utilize specific price thresholds as the
basis for making short-term scheduling decisions. In this paper,
classification of future electricity market prices with respect to pre-
specified price thresholds is introduced. Two alternative models
based on support vector machines are proposed in a multi-class,
multi-step-ahead price classification context. Numerical results are
provided for classifying prices in Ontario’s and Alberta’s markets.

Index Terms—Classification, demand-side management, fore-
casting, scheduling, smart grid, support vector machines.

I. INTRODUCTION

E LECTRICITY price is a key factor in determining
short-term operating schedules and bidding strategies in

competitive electricity markets [1]. Consequently, numerous
data-driven approaches have been proposed for modeling and
forecasting short-term electricity market prices [2]–[16]. The
reported price forecasting errors generally range from approxi-
mately 5% to 36% and vary based on the technique used and the
market analyzed. This range of error, however, is relatively high
when compared to that of short-term electric load forecasting
where errors usually range from 1% to 3% [17].

Various factors contribute to reduced accuracy of elec-
tricity price forecasting models; unpredictable forced outages
[16], complex and changing price regimes [18], integration
of intermittent energy sources [19], and implementation of
reliability-based demand response programs [20] all introduce
fluctuations and changes in electricity prices that may be
extremely difficult to model accurately and consistently.

It is observed from the existing literature that traditional price
forecasting models are generally developed for numerical pre-
diction or point-forecasting. That is, existing models try to pre-
dict the exact value of prices at future hours by approximating
the true underlying price formation process. However, not all
market participants need to know the exact value of future prices
in their decision-making process. For example, through the in-
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troduction of “smart grid” technologies and new marketplace
initiatives, it is expected that the demand-side interactions will
be enabled to widely participate in electricity markets at the res-
idential, commercial, and industrial levels [21]. Considering the
on/off nature of most of electric loads, especially at the residen-
tial level, demand-side market participants may primarily react
when prices exceed specific thresholds. Beyond these thresh-
olds, the exact price of electricity would be considered unim-
portant since it is simply “too expensive”. Moreover, many de-
mand-response products are designed having certain thresholds
for electricity prices in mind [20], such as the hour-ahead dis-
patchable load program in the Ontario market [22]. Another ex-
ample of threshold-based decision making can be found in elec-
tricity consumers with on-site generation facilities. These fa-
cilities only purchase electricity from the grid if the electricity
market price are below the marginal cost of operating the on-site
electricity generation equipment [12]. In these types of applica-
tions where the exact value of prices is not primarily required,
the point-price forecasting problem can be reduced to price clas-
sification subproblems in which the class of future prices is of
interest.

This paper proposes a short-term price classification method
as an alternative to numerical price forecasting. In price classifi-
cation, predictions are made with respect to whether the price is
above or below pre-specified price thresholds defined by users
based on their operation and planning objectives. Price classifi-
cation is specifically useful when the exact value of future prices
is not critically important. The main contribution of this paper
is to propose a customized approach to predict the behavior of
future prices where the specific forecasting needs of the users
are taken into consideration.

The remainder of this paper is organized as follows: In
Section II, a review of the background pertaining to this work
is presented. The proposed models are discussed in Section III
followed by the numerical results in Section IV. Finally, the
main findings of this paper are summarized in Section V.

II. BACKGROUND REVIEW

In general, data-driven predictive models are built for either
numerical prediction or classification. A numerical prediction
model approximates the underlying process under consideration
and is used to forecast future values for the variable of interest.
Classification refers to the assignment of class labels to unla-
beled data. This section presents a background review of liter-
ature pertaining to short-term electricity price forecasting, and
discusses the steps of predictive model building.

A. Review of Short-Term Price Forecasting Literature

There are a wide variety of publications regarding numerical
or point forecasting of future electricity prices; these works em-
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ploy a variety of different models and have had varying accuracy
in their predictions. For example, the work presented in [4] de-
scribes neural networks-based models for forecasting prices in
the Spanish and Pennsylvania, New Jersey, and Maryland (PJM)
markets with an overall forecasting error of about 5%; how-
ever, the model accuracy was reported to collapse when only
high price hours were concerned. Weighted nearest neighbors
techniques are proposed in [5] and forecasting errors ranging
between 5% and 16% were reported for the Spanish market;
the variations in forecast accuracy over the studied period were
attributed to various unpredictable factors including extreme
weather conditions. A dynamic model based on system iden-
tification techniques is detailed in [6] with forecasting errors
varying between 5% and 36% for the Italian, New England,
and New York markets. Several statistical parametric and semi-
parametric models are applied to forecasting in California and
Nordic electricity market prices in [7] and errors ranging from
3% to 15% were reported. It was concluded in [7] that no single
model could presently be chosen as the single best approach. A
hybrid method, composed of support vector machines (SVMs)
and a self-organized map, is applied to New England market
prices in [8] with resulting forecasting errors of about 10% and
7% reported for the prices before and after the implementation
of the standard market design, respectively. In [9] and [10], time
series and neuro-fuzzy models are applied to forecasting On-
tario’s electricity prices; the forecast errors were reported to
vary between 16% and 22% and the high forecast errors were
attributed to the high volatility of prices in Ontario [9]. In [11],
several linear and nonlinear models are employed to forecast
Ontario prices for a three-year study period. The average fore-
casting errors in [11] vary between 22.98% and 31.86%, with a
SVM-based model yielding the lowest errors. In another study
[12] on forecasting prices in National Electricity Market of Aus-
tralia, an SVM-based model is optimized using genetic algo-
rithms and the resulting forecast errors are reported to vary be-
tween 16.39% and 23.26% for different time periods.

In addition to publications regarding numerical electricity
price forecasting, several papers have included the estimation
of prediction or confidence intervals. Among those, a method
based on neural networks and Kalman filters is described in
[13] and a different approach based on SVMs is detailed in
[14].

Finally, [15] and [16] focus on the treatment and handling
of price spikes and propose hybrid models to predict their
occurrence.

B. Data-Driven Model Building

Building a data-driven predictive model has three main steps:
data preprocessing, feature selection, and model selection. This
section provides a literature review and discussion regarding
these three steps. When reviewing each of the steps, both the
pertinent background information as well as the methods em-
ployed in the present work are discussed.

1) Data Preprocessing: Data preprocessing focuses on the
initial treatment of data and includes gathering of information
on data statistics, anomalies, missing values, and necessary data
transformations. In the context of modeling electricity market
price data, the reported studies highlight two aspects applicable

to price data in this step. First is the problem of outliers, where
prices do not follow the observed historical patterns [2]. Outliers
or abnormal prices generally result from supply scarcity or un-
expected operational events such as the forced outage of a gen-
eration unit. Manipulating the outliers and data smoothing has
been reported [7]; however, it has also been argued that unusual
prices in electricity markets reflect the reality of price volatility
in these markets and thus should neither be removed nor manip-
ulated [24].

Second, electricity prices are not stationary and show strong
daily and weekly seasonalities [2], [5]. In order to achieve better
stationarity in the data, several data transformation approaches
such as differencing, Box-Cox, and wavelet transformations
have been utilized [2], [7], [24]. However, stationarity is not
always a necessary condition, depending on the underlying
assumptions of the employed models; for example, time series
models are limited to stationarity data, but not neural networks.
In the present work, only data normalization is applied since it
has been found to improve classification accuracy.

2) Feature Selection: In this step, a subset of features (i.e.,
inputs or explanatory variables) is chosen from an initial fea-
ture set that efficiently captures patterns in the data. Two major
groups of feature selection techniques are filter and wrapper
methods. In filter methods [25], features are assessed for their
relevance in explaining the target variable and those with the
highest relevance are selected. Filter methods are fast and simple
but the potential disadvantage of them is that feature selection
is isolated from the prediction model. In wrapper methods, the
complete feature set is explored for a near-optimal subset and
the relevance of features is evaluated by the accuracy of the
final predictions. While wrapper methods have been shown to
provide high prediction accuracy [25], they are computationally
expensive when compared with filter methods.

In the context of forecasting electricity prices, the most pop-
ular features are historical price and load data. Other features
such as day and hour indexes, transmission constraints, load
levels of neighboring systems [9], [10], [26], variants of re-
serve margin [9], [16], generator outages and temperature [10],
and availability of different types of generation resources [3],
[4], [27] have also been reported with varying degrees of ef-
fectiveness [10], [26]. Filter methods are the most frequently
reported feature selection technique where linear measures in-
cluding cross-correlation and auto-correlation [6], [7], [9], [10],
[26], [28] as well as nonlinear measures such as mutual informa-
tion [4] are used to evaluate the relevance of candidate features
to price.

In the present work, historical price, load, and reserve infor-
mation are considered in the initial set of features. The support
vector machine recursive feature elimination (SVMRFE) [29]
and kernel-based feature vector selection (KFVS) [30] tech-
niques are employed for feature selection. In SVMRFE [29], a
ranked list of features is created, and through a forward search
process, the subset of features with the highest impact on clas-
sification accuracy is selected. KFVS [30] maps feature vectors
into a lower dimensional space and their effectiveness in im-
proving classification accuracy is evaluated through a forward
search method. Note that KFVS is presented in [29] as a filter
method, but it is customized and used as a wrapper method in



ZAREIPOUR et al.: CLASSIFICATION OF FUTURE ELECTRICITY MARKET PRICES 167

the present work. These two methods result in reasonably ac-
curate results at affordable computational costs. A comparative
analysis of effectiveness of various feature selection algorithms
for electricity market price classification is beyond the scope of
this paper.

3) Model Selection: In the final step, a set of training
instances are used to construct a classification model that
describes the available data and can be used to label fu-
ture observations. Classification models can be categorized
into logic-based, perceptron-based, likelihood-based, and
SVM-based approaches [31]. In logic-based models, prediction
is performed by setting some logical rules that are learned
from a training set. Perceptron-based models are driven on
feed-forward neural networks in which the output is a function
of the weighted sum of the inputs. In likelihood-based or
statistical models, the prediction is performed by constructing
a probability model based on the historical data.

In SVM-based models, the fundamental idea is to determine
separating hyperplanes to distinguish different data classes in a
way that the hyperplanes have the maximum possible distance
from either of the data sets. SVM theory is explained in detail
in [32]. A brief review of SVM modeling technique is also pre-
sented in the Appendix. SVMs can achieve accurate classifica-
tion results using a small set of training instances compared to
other classification techniques [32]. This feature is particularly
important in electricity market price classification since regime
changes have been observed over relatively short time periods
[18]. Moreover, SVMs are relatively robust against outlier data
in the training set due to the way they find the alignment of
the hyperplanes [32]. This is important as outlier prices have
been repeatedly observed in electricity market price patterns
[15]. Support vector machines have previously been applied to
several applications with competitive classification accuracy at
reasonably low computational time [33]. Therefore, SVMs are
employed as the core classifier in the present work.

In the present work, the forecast user considers pre-de-
fined price thresholds , where

and and are the minimum
and maximum prices. In such case, there would exist price
classes, , corresponding to

price
ranges that are separated by classification boundaries.
Thus, the price classification here is a multi-class problem.

SVM classifiers were originally developed for binary, two-
class problems. To extend the binary SVM to multi-class prob-
lems, three alternative approaches are available [34]. In one-
against-all approach, independent classifiers are trained to
classify the input data in an -class problem. Each classifier
decides whether or not a given training instance belongs to a cer-
tain class. The classifier whose decision function,
in (9), has the highest value decides the class if the decisions
of individual classifiers do not match. In one-against-one ap-
proach, an independent classifier is applied to each possible pair
of classes for a given training instance in an -class problem,
and the class that gets the highest number of votes is chosen
as the one to which that given candidate input data is assigned.
Therefore, an -class problem with decision boundaries
requires classifiers. Finally, in a single-machine

approach, all available classes are considered at the same time
and one optimization problem is solved to classify the data into

classes.
A comparative study [34] has examined the three alterna-

tive multi-class approaches for a wide range of classification
applications. While for a given set of data the three methods
presented different levels of accuracy in some cases, none of
the methods consistently outperformed others across all appli-
cations. In the present work, the three approaches were ini-
tially implemented and tested; however, the overall accuracy
results were not found to be significantly different. Thus, the
models presented in the following sections are based on the
one-against-all approach.

III. PROPOSED SVM-BASED CLASSIFIERS

The present work focuses on 24-hour-ahead classification
of hourly electricity market prices. It is assumed that previous
prices up to hour , denoted as , are available and
the objective is to determine price classes for the next 24 h. That
is, the goal is to find classes of for .
For simplicity, it is also assumed that is the price at the
last hour of Day and the 24 hourly price classes for Day

are to be determined. Linear [2] and nonlinear [4] au-
tocorrelation studies have shown that electricity market price
time series are strongly autocorrelated. In other words,
has strong correlation with time lagged prices, for instance,

. Therefore, time
lagged prices have been consistently included in the models
proposed in the literature for numerical price forecasting [2],
[4], [9].

If lagged prices are used as input to a model, however, all pre-
vious numerical values may not be available in the forecasting
stage depending on the forecasting horizon. For example, con-
sider forecasting , that is 5 h in the future from the present
time . In this case, assume time lagged prices
are among the model input features. However, values ,

, and are unavailable as they are in the future from the
present time . In numerical price forecasting, an unavailable
lagged price is normally replaced by its corresponding forecast
value as the best guess. In the present work, however, the output
of a classification model is no longer a numerical value but is
a class, and thus, unavailable lagged prices cannot be replaced
by their corresponding forecasts anymore. Keeping this issue
in mind, two alternative classification models are proposed in
the following sections. These proposed models do not have
the unavailable lagged prices present in the feature sets. Also,
exploratory simulations generating numerical forecasts for
these values and including them into the feature set was not
found to be a competitive alternative for the proposed models.

A. Model M1: Independent Classifiers for Each Hour

In this model, the price time series is
broken into

subtime series, where represents price at Hour on Day
. Under this model, the 24-hour-ahead classification problem is
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broken into 24 one-step-ahead classification problems. To pre-
dict the class of using the data form previous days,

the set of initial features, denoted here by , can be
written as

(1)

where is the price at Hour on days previous to day

and represent the subset of all other non-price fea-
tures such as load for Hour for Model M1. Depending on the
number of classes and the selected multi-class approach, each
one-step-ahead classifier may have a different number of binary
SVMs. This set of 24 independent one-step-ahead classifiers is
referred to as Model M1.

The disadvantage of Model M1 is that neither the price auto-
correlation information nor the most recent price information is
represented in the model. The SVMRFE approach [29] is used
to select the final set of features out of for each of
the 24 one-step-ahead classifiers.

B. Model M2: Independent Classifiers for Each Hour
Considering Price Autocorrelations

This model is similar to Model M1 in that price at each hour
is classified independently. However, unlike Model M1, all 24
hourly prices of previous days are considered rather than only
the historical prices for Hour . Thus, the initial feature set for
predicting the class of can be written as the following
matrix form:

...
...

...

(2)
where , , represents the subset of
all other non-price features from Day considered for
Hour . Observe that all of the 24 hourly prices from previous
days are used as features for each individual hour, that is, for

. The difference in feature sets for different
hours in this model lies in . Although the unavailable
price information is not represented in this model either, the
historical price autocorrelation information is represented in the
initial set of features as the price patterns in the previous days
are retained. Similar to Model M1, the number of binary SVMs
in this model also depends on the number of classes and the
selected multi-class approach. The set of 24 hourly classifiers is
referred to as Model M2.

Note that for Model M2 the initial feature set is a “matrix”,
as opposed to the “vector” of features for Model M1. Thus, the
task in feature selection stage for Model M2 is to select the most
informative days from the previous days, i.e., the most infor-
mative columns of (2). This retains intra-day price and demand
patterns and ensures that if a certain day is found informative,
its full price pattern is represented in the model. Therefore, fea-
ture selection in this case is in fact “feature vector” selection,
and hence, the KFVS approach of [30] is used for this model.

Fig. 1. Sample ACF for (a) the HOEPs and (b) the HAPPs for year 2008.

IV. NUMERICAL RESULTS

Historical data from the Ontario and Alberta electricity
markets, which have the some of most volatile prices in North
America, are selected for numerical simulations in this work.
Ontario’s physical electricity market is a real-time joint energy
and reserve market and is cleared every 5 min. The hourly
average of cleared energy prices is referred to as Hourly On-
tario Energy Price (HOEP) and applies to most demand- and
supply-side wholesale market participants. Numerical fore-
casting errors ranging from 16% to 22% have been reported
in the literature for the HOEP [9], [10]. Alberta’s market is an
energy-only, real-time market which is cleared every minute
and the average of the 60 market clearing prices over an hour,
referred to as the Hourly Alberta Pool Price (HAPP), is used as
the basis of financial settlements.

Fig. 1 depicts the sample autocorrelation functions (ACF) of
the HOEP and HAPP time series for year 2008. Strong autocor-
relations with the lagged prices, especially the first few lags and
the seasonal daily and weekly lagged prices, are evident for both
time series. Also observe that autocorrelations are stronger for
the HOEPs compared to those of the HAPPs.

For Ontario’s market, price, load, and reserve information are
considered in the initial set of features. For representing system
reserve margin, the predicted supply cushion (PSC) is consid-
ered and is defined as

, where PAS is the predicted available supply, FD is the
forecast demand, and RR is the reserve requirement. For Al-
berta’s market, price and load information are considered in the
initial set of features. There is no reserve metric information in-
cluded in the Alberta studies since this information is handled
in an independent auction and some of the data is not publicly
available.

Four classification thresholds are considered for each of the
markets: , , , and
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for Ontario and , ,
, and for Alberta, with all values

in $/MWh. and are, respectively, the price floor and
price cap defined by the applicable market rules in Ontario and
Alberta. The values of and are, respectively, selected
as the annual average and twice the annual average of the prices
for year 2008. In practice, however, the users would normally
define the thresholds based on their own operating criteria. For
the above price thresholds, the price data are classified into
three classes, that is, for prices between and , for
prices between and , and for prices between and

.
The standard binary SVM as discussed in the Appendix is

used as the core classifier for this research. Since Models M1
and M2 classify hourly prices independently, 24 independent
binary SVMs would be required for each model for a two-class
problem. Considering the three assumed classes and the one-
against-all multi-class approach, each of the models M1 and M2
are therefore composed of 72 independent binary SVMs.

Two popular kernel functions, radial basis and polynomial,
are examined to map the data into a high-dimensional space.
The Gaussian radial basis function,

, was found to yield higher overall accuracy than the
polynomial approach. The numerical value of was decided by
trial and error. For a given day, we started with the variance of
normalized prices over the previous 35 days and built the clas-
sification model. We also built the models with other values of

, i.e., from to , with 1%
increments. We repeated this process for several randomly se-
lected days over the study period of year 2008. It was observed
that the value of equal to, or very close to, the 35-day vari-
ance generally resulted in highest classification accuracies for
the examined days. Thus, the 35-day moving variance of the
normalized prices was used for the value of to build the daily
classification models. In addition, we observed that the penalty
term in the SVM objective [see (8) in the Appendix] did not
contribute to the overall model accuracy and thus we set it to
zero in the final tested models.

The proposed models are built and tested for each and every
day of year 2008. For each given day, historical data from the 35
previous days are considered in the initial set of features, that is,

. The choice of 35 days was based on trial and error and
needs to be reexamined if the models are applied to other market
prices. The SVM classifiers and the feature selection algorithms
are implemented in MATLAB, and processing was performed
on a single core commodity desktop system. To meet the prac-
tical data availability time-lines in real-life markets, the com-
putational time was limited to 50 min and was considered as a
stopping criterion when searching the feature space by the fea-
ture selection algorithms. In addition, it is anticipated that mul-
tithreading, multicore processing systems, and vectorization of
the algorithms would likely improve the computational effec-
tiveness considerably.

The mean percentage classification error (MPCE) is used as
the overall measure of classification error in this paper. MPCE
is defined as: , where is

the number of misclassifications and is the total number
of classification instances. Given the number of models inves-
tigated and the consideration of three classes in this work, pre-
senting other more detailed error/accuracy measures, such as a
confusion matrix, is not possible due to page limitations.

A. Model M1

Considering the structure proposed in Section III-A, Model
M1 is trained and tested for classifying the HOEPs and the
HAPPs using three alternative initial feature sets. The alterna-
tive initial feature sets are explored to examine whether addi-
tional information can contribute to improved model accuracy
in conjunction to historical pricing. In the first scenario, Model
M1 is trained using an initial feature set which only consists of
historical prices. Thus, in this case, the set of initial features for
classifying , is considered as follows:

(3)

In other words, prices at Hour for 35 previous days are consid-
ered as inputs to the model. Twenty-four three-class classifiers
are built for , and the resulting 24-hour-ahead
classification model is referred to here as .

In the second scenario, load data are also added to the set of
initial features, as follows:

(4)

where , represents the historical load

for Hour of Day and is the load forecast
for Hour of Day . Note that actual demand values are
used in the simulations as historical demand data, and load fore-
casts made available by the Ontario and Alberta market opera-
tors are used for . The resulting 24-hour-ahead classifi-
cation model is similarly denoted here by .

A third scenario is applied to the Ontario market only and
includes PSC data for 35 previous days, i.e.,

, as well as PSC for the target day, i.e., ,
into the initial feature set as follows:

(5)

Note that the PSC values used in the simulations are all based on
predicted values of demand and supply in both model building
and forecasting stages. The resulting 24-hour-ahead classifica-
tion model is referred to here by .

The classification errors of the three scenarios for Model M1
are presented in Table I.

B. Model M2

Model M2 is also trained for classification of both market
price time series in three different scenarios. The first sce-
nario considers only historical prices in the initial feature sets
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TABLE I
MONTHLY MPCES (%) FOR ALL MODELS

and these feature sets are identical for all the 24 h, i.e. in
(2) , . In this scenario, the
initial feature matrix is composed of 35 columns, each column
consisting the 24 hourly prices of a historical day.

Feature vector selection in this scenario is conducted ac-
cording to the KFVS algorithm in [30] which requires a
mapping function to reduce the dimension of the original
feature vectors. The KFVS algorithm does not impose any
limitations on the characteristics of the mapping functions,
except that they must have a lower dimension than the original
vector. This study considers the general features of electricity
prices, such as high daily price volatility and price spikes,
and a mapping function composed of daily geometric mean
of hourly prices, intra-day price volatility, and daily average
of hourly prices is used. Intra-day price volatility for Day

is defined as , and is a measure

of hourly price variations where
is the logarithmic price return and is
[35]. Use of the geometric mean mitigates the negative impact
of extreme outlier prices whereas the price volatility ensures
that intra-day price fluctuations are represented. This mapping
function effectively maps the columns of the initial feature
matrix from a 24-dimensional space into a three-dimensional
space. The outcome of the feature selection process here is a set
of previous days, out of the 35 initially considered days, whose
data describe price classes the best. Note that when certain days
are selected by the KFVS algorithm as informative days, all
of the 24 hourly prices of the selected days are included in the
feature set of the SVM classifiers.

In the second scenario, load data are added to the set of ini-
tial features. Thus, the non-price feature sets can be written as
follows:

(6)

where . Observe that the historical load for all
the 24 h of the previous days are included in the feature sets and
the load forecast is the only feature that varies in the features

sets for different hours. For feature selection, daily average de-
mand, intra-day demand volatility, and are considered
as the mapped features in addition to those considered in the
first scenario. Using intra-day demand volatility ensures that the
daily demand fluctuations are represented in the feature selec-
tion process.

In the third scenario, and for Ontario’s market only, the PSC
data are added to the set of initial features as follows:

(7)

In this scenario, daily average PSC, daily geometric mean PSC,
and are added to the mapped features of the second
scenario. The resulting 24-hour-ahead models in the three sce-
narios are referred to here by , , and .
The classification errors for Model M2 in the three scenarios are
also presented in Table I. Observe that Model M2 significantly
outperforms Model M1 for both markets.

The results presented in Table I indicate that additional load
and reserve information has not significantly improved classifi-
cations accuracy in the models. In order to explain this obser-
vation, the fluctuations of price and load in year 2008 for Al-
berta’s system are presented in Fig. 2. In this figure, the load-
price pairs are sorted in a descending order with respect to load
values. Although very high prices are more likely at high de-
mand hours, moderate and high prices often occur over a wide
range of load. For example, class in Alberta studies includes
prices over $180/MWh and corresponding demand could vary
between about 7000 to 9000 MW. Thus, the additional informa-
tion carried by the demand data has a marginal value in identi-
fying price classes. Similar behavior was observed for load and
PSC in Ontario’s market. Additional load and reserve informa-
tion, however, has been useful in previously published numer-
ical price forecasting studies [3], [4], [9].

Also observe from the results presented in Table I that the
classification accuracy for the cold months of November to Feb-
ruary are lower compared to other periods. Both Ontario and
Alberta markets experience high demand during cold months
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Fig. 2. Price-demand fluctuations for Alberta’s market in year 2008.

which results in highly volatile prices, and thus, more difficult
to predict [36].

C. Performance Comparison

Classification accuracy of the models proposed in this paper
is compared to that of the numerical forecasts presented in [9].
Numerical HOEP forecasts are presented in [9] for a 42-day
test period, consisting of three two-week periods in spring,
summer, and winter 2004. The forecasts are generated using
ARIMA, transfer function (TF), and dynamic regression (DR)
models. The pre-dispatch price (PDP) forecasts published by
the Ontario Independent Electricity System Operator for the
same test period are also considered. These price forecasts are
classified according to the thresholds specified in the present
work, and the resulting 42-day MPCEs are found to be 21.52%,
17.85%, 17.26%, and 26.39% for the ARIMA, TF, DR models,
and PDPs, respectively. The ARIMA model and the TF and DR
models were trained using 28 and 70 days of historical data,
respectively, which were decided by trial and error. Also note
that these models were separately estimated for each and every
day of the 42-day period. The proposed models in the present
paper were also trained using the same set of features from
year 2004, but based on 35 historical days. Models M1 and M2
of the present work generally outperformed those in [9] in all
scenarios, with Model having the lowest 42-day MPCE
of 6.84%.

In addition, we built a moving average (MA) model by as-
signing the average of prices over a seven-day moving window
as the price forecasts of the next day, for each and every day
of year 2008. The forecasts of the MA model are also classi-
fied according to the thresholds defined for the HOEP and the
HAPP, and the resulting MPCEs are presented in Table I. Ob-
serve that the classification accuracy of the proposed models is
significantly higher than that of the MA models for the two price
sets.

We also generated numerical forecasts for Ontario market
prices of year 2008 using the model of [37] which is based on
similar day method and neural networks (SDNN). The SDNN

Fig. 3. Sensitivity of the MPCE to threshold � , the HOEP.

models were trained using the same set of information as for
model in Section IV-B. Next-day forecasts were gen-
erated for each and every day of year 2008, and the results
were classified according to the same selected threshold values
for Ontario, as discussed earlier. Note that the SDNN models
were individually retrained for forecasting prices of each spe-
cific day. The monthly average errors are presented in Table I
under column SDNN. The results show that classification accu-
racy of our models is significantly better than that of the SDNN
model.

D. Sensitivity of the Results to the Selected Thresholds

To investigate the sensitivity of classification errors to price
thresholds, we considered a two-class version of Model
where the classes and referred to prices under and above
a single threshold . The model was trained for classifying the
HOEP using different values of ranging from 0 to 150 $/MWh
in $10/MWh increments. To make a sensitivity comparison, the
forecasts of the ARIMA, TF, and DR models of [9] and the
PDPs, are also classified according to . Forecasts of the MA
model for the 42-day period were also calculated and classified
according to . Note that the results of Model are also
from the same 42-day test period in year 2004 as in [9]. The
resulting classification errors for each threshold are presented
in Fig. 3.

Observe from Fig. 3 that the highest classification errors
occur when the threshold is around $50/MWh, which is the
year 2004 annual average of the HOEP. In order to explain this
sensitivity, consider the extreme case in which the threshold
is very small, say $1/MWh. The 2004 historical HOEPs were
all above $5/MWh, and a simple model can capture this trend
and predict the future prices to be above $1/MWh with a high
accuracy. This would lead to a very small classification error.
In another extreme case, assume a very large threshold, say

MWh. Considering the historical HOEP behavior,
it is not difficult to predict that prices are under this threshold
most of the time, which would also result in a very small
classification error. Predicting the prices with respect to any
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threshold in between the two extreme cases will be more com-
plicated, depending on how often prices fall above or under that
threshold. HOEP values fall below MWh for about
60% of hours in 2004, indicating that prices are distributed
around this threshold almost evenly and, thus, are harder to
classify. Note also from Fig. 3 that similar sensitivities to the
threshold value can be observed for the numerical forecasts
of the ARIMA, TF, and DR models and the PDPs. Similar
sensitivities were observed for the HAPP, but details are not
discussed here.

From the results presented in this section and Section IV-C,
price classification may also have relatively high errors, espe-
cially if the threshold is defined around the mean price. How-
ever, these errors are significantly lower compared to numerical
price forecasting. The cost of this lower error is the loss of exact
price information, which may not be important in specific appli-
cations. For example, an industrial consumer may decide to shut
down a production line if prices hit a certain threshold.

V. CONCLUSIONS

Classification of future electricity prices with respect to a
number of pre-specified price thresholds is discussed in this
paper. Multi-class SVMs are employed as the core classifier for
multi-step-ahead classification. Two different models are pro-
posed and analyzed considering different sets of input pricing
data, and each of these models is further evaluated considering
combinations of price, load, and predicted supply cushion. The
models are tested using data from both the Ontario and Alberta
electricity systems, and both of these markets exhibit high
price volatilities. Where possible, classification accuracy of
these models is compared against the data available in previous
literature.

The simulation results demonstrate that the proposed price
classification models provide significantly more accurate results
compared to the available numerical price forecasting models
that are available for comparison. This is particularly impor-
tant in markets with high price volatility where numerical price
forecasting is more difficult and classification of these predicted
prices leads to incorrect analysis. The cost associated with this
higher classification accuracy is the loss of exact price value
information; however, market participants whose operation de-
cisions are based on certain price thresholds can realize an im-
provement in their operating strategies.

APPENDIX

A binary SVM is a “maximum margin classifier”
that separates the training data into two classes while
maximizing the margin between the two [32]. Assume

is the
set of linearly-separable training instances, where is the

-dimensional vector of features and represents the class of
instance , say for one class and for the other.
The goal of training the SVM is to find two maximum-margin
hyper-planes and which would
separate the instances having =1 from those having =-1. It
can be shown that is the margin bounded by the two

parallel hyper-planes. To maximize this margin, and to avoid
non-convexity, the following equivalent quadratic optimization
problem is solved to find SVM parameters and :

(8)

(9)

where maps the input vector into a high-dimensional
space, is a penalty factor, and the terms are slack variables.
The mapped input feature and the penalty term are used when
the data are linearly nonseparable. Constraint (9) discourages
any instance from crossing over the hyper-planes and falling
into the margin, and in case one does, this constraint penalizes
the objective function accordingly. The optimization problem in
(8) and (9) is solved using the original optimal hyper-plane al-
gorithm proposed by Vapnik. However, other approaches, such
as sequential minimal optimization, are also available.
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